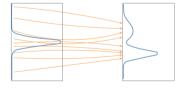


PROBABILISTIC INVERSE PROBLEMS

Contents

- Simulation-based inference Solving inverse problems with deep learning
- Continuous Normalizing Flows An architecture for conditional density estimation
- Denoising score matching Unnormalized density estimation
- Annealed Langevin Dynamics Turning score matching into a generative model
- Diffusion models Generating data from noise
- Physics Constraints Include PDE priors



Simulations and Uncertainty

- The simulator is a (statistical) model described by a computer program
- Given a vector of parameters x, distribution of **latent variables** $z \sim p(z \mid x)$
- The simulator produces an observation or **output** $y \sim p(y \mid x, z)$

Examples for x

Constants of Nature, Reynolds Nr. (Partial) State of the system Incubation rate of a pathogen

Examples for z

Unobservable / stochastic variables
Intermediate simulation steps
Control flow of simulator

Reminder: Forward vs Backward

■ Forward Problems

- Obtain the distribution for the **outputs** $y \sim p(y \mid x, z)$ given uncertainties in z
- Typical setting for classical numerical methods

💶 Inverse Problems 💶

- We measure or **observe** y and want to know which $x \sim p(x \mid y, z)$ lead to it
- Typical setting for *simulation-based inference* (and this whole chapter)

Bayesian Inference

- There is a **prior** p(x) over the parameters
- The function p(y | x) is called the **likelihood** function
- We are interested in the posterior

$$p(x | y) = \frac{p(y | x)p(x)}{\int p(y | x')p(x')dx'}$$
 Evidence

• The likelihood $p(y|x) = \int p(y,z|x)dz$ is often intractable

Challenges

- Calculating the evidence is expensive, typically requires Markov Chain Monte Carlo (MCMC) methods or variational inference (VI)
- The likelihood is often intractable. Solve with Approximate Bayesian
 Computation (ABC). Computationally expensive and expert knowledge required

Deep Learning

Train a conditional density estimator $q_{\theta}(x \mid y)$ for the posterior $p(x \mid y)$ that allows sampling and can be trained from simulations $y \sim p(y \mid x)$ alone

Unconditional and Conditional Density Estimators

• Consider a model family $\{q_{\theta}(x)\}_{\theta}$ parameterized with weights θ such that for all θ the model $q_{\theta}(x)$ is a density

$$\int q_{\theta}(x)dx = 1$$

- We will discuss normalizing flows (→ later) as an example how to build these models
- Train $q_{\theta}(x)$ to be close to a target density p(x)
- Theory and implementation can be extended to conditional models $q_{\theta}(x \mid y)$

Classical methods

- ✓ Decades of research and rich mathematical theory
- ▼ Easy to replace simulations, likelihood functions and priors
- X Computationally expensive, curse of dimensionality
- X Difficult to represent arbitrary priors as mathematical models

Learning-based methods

- ▼ Fast inference once trained
- ▼ Not affected by curse of dimensionality as strongly, can represent arbitrary priors
- X Lacks more rigorous theoretical guarantees, requires upfront training cost

Short Detour: Training Objectives & Conditioning

Comparing Distributions

Kullback Leibler (KL) Divergence

• The KL divergence between two probability distributions P and Q with densities p and q is defined as

$$KL(p | | q) = \int p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

- Always positive $\mathrm{KL}(p \mid \mid q) \geq 0$, and $\mathrm{KL}(p \mid \mid q) = 0$ if and only if P = Q
- Goal: Knowing p, optimize θ by minimizing $\mathrm{KL}(p \mid \mid q_{\theta})$

Unconditional Training Objective

$$\begin{aligned} \text{KL}(p \,|\,|\, q_{\theta}) &= \int p(x) \, \log \left(\frac{p(x)}{q(x)} \right) dx \\ &= \mathbb{E}_{x \sim p(x)} \left[\log \left(\frac{p(x)}{q_{\theta}(x)} \right) \right] \\ &= \mathbb{E}_{x \sim p(x)} [\log p(x)] - \mathbb{E}_{x \sim p(x)} [\log q_{\theta}(x)] \end{aligned}$$

• When $q_{ heta}$ is a density, the training objective for heta is minimizing

$$\mathbb{E}_{x \sim p(x)}[-\log q_{\theta}(x)]$$

Conditional Training Objective

• When considering the posterior p(x | y), the objective becomes

$$\mathbb{E}_{y \sim p(y)} \left[\mathbb{E}_{x \sim p(x|y)} [-\log q_{\theta}(x|y)] \right]$$

We can rewrite this as

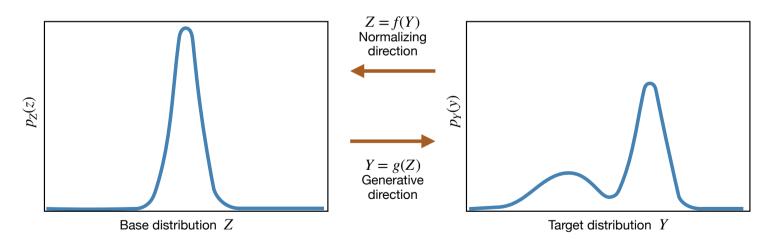
$$\begin{split} \mathbb{E}_{y \sim p(y)} \left[\mathbb{E}_{x \sim p(x|y)} [-\log q_{\theta}(x \mid y)] \right] &= - \int \int p(y) p(x \mid y) \log p(x \mid y) dx dy \\ &= - \int \int p(y,x) \log p(x \mid y) dx dy \quad \text{Bayes' theorem} \\ &= - \int \int p(x) p(y \mid x) \log p(x \mid y) dy dx \\ &= \mathbb{E}_{x \sim p(x), y \sim p(y|x)} [-\log q_{\theta}(x \mid y)] \end{split}$$

Great! Directly applicable to conditional distributions ... strictly for densities!

Normalizing Flows

Kobyzev et. al. (2020)

Normalizing Flows are transformations of a simple base distribution p_Z into a complicated target distribution p_Y via a sequence of invertible and differentiable mappings



(Similar to z from SBI, but "simple")

Normalizing Flows

• For a single, invertible mapping $g:\mathbb{R}^D\to\mathbb{R}^D$ and inverse function $f=g^{-1}$, we can write

$$y = g(z)$$
 and $z = f(y)$

• The probability density $p_{\gamma}(y)$ can be computed as

$$p_Y(y) = p_Z(f(y)) \left| \det \frac{\partial f}{\partial y} \right|$$
 Jacobian of f

• p_Z is usually a normal Gaussian, so evaluating $p_Z (f(y))$ is easy

Stacking Mappings

We compose several mappings, so that we can write

$$g = g_1 \circ g_2 \circ \dots \circ g_n$$
 and $f = f_n \circ f_{n-1} \circ \dots \circ f_1$

where g_i is the inverse of f_i

• Define $y_i = f_n \circ f_{n-1} \circ \dots \circ f_{i+1}$

• The probability density $p_Y(y)$ can be written as $p_Y(y) = p_Z(f(Z))$ $\prod_{i=1}^n \left| \det \frac{\partial f_i}{\partial y_i} \right|$

- Note: we can easily turn probability densities into (log) likelihoods. This turns the products of previous equations into sums.
- In practice, we want to parameterize the weights of g_i by θ_i . It is not trivial, to find mapping types that are invertible for all possible parameters θ_i
 - Coupling layers (Dinh et al. 2015)
 - Autoregressive flows (Kingma et al. 2016)
- Easy sampling: draw a random vector from $p_Z(z)$, which is usually a normal Gaussian. We obtain a sample from the target distribution via y=g(z), it's probability is computed by transforming $p_Z(z)$ into p_Y

Neural Ordinary Differential Equations

Continuous-time Networks

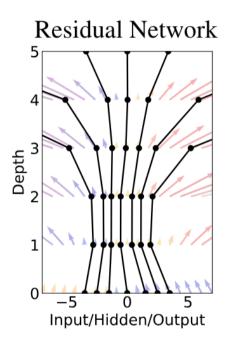
• **Before:** a sequence of skip connections

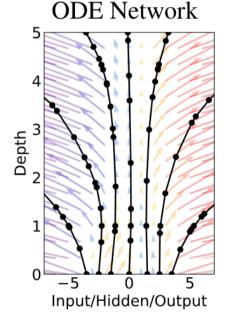
$$h_{t+1} = h_t + f(h_t, \theta_t),$$

where $f(\cdot, \theta_t)$ is a network with weights θ_t and steps $t \in \{0...T\}$

 Neural ODE: consider an ODE as the continuous-time limit of above

$$\frac{dh(t)}{dt} = f(h(t), t, \theta)$$





Chen et. al. (2018)

Continuous Normalizing Flows

Continuous-time Normalizing Flows

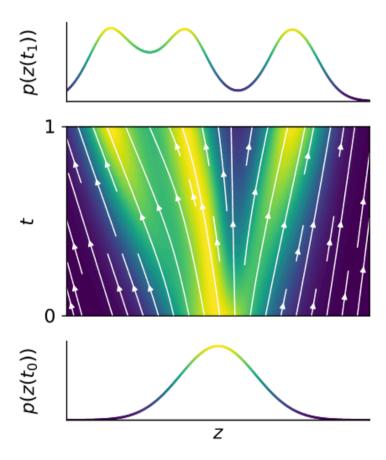
- Replace composition of layers g_{θ} by continuous-time network $f_{\theta}(\;\cdot\;,t)$
- Consider the neural ODE

$$\frac{\partial z(t)}{\partial t} = f_{\theta}(z(t), t)$$

with initial conditions $z(0) = z_0$ from time $t_0 = 0$ until $t_1 = 1$

- The neural ODE is invertible and differentiable w.r.t. z(0) and θ
- We can track the change in probability via the instantaneous change of variables formula

$$\frac{\partial \log p(z(t))}{\partial t} = -\operatorname{Tr}\left(\frac{\partial f}{\partial z(t)}\right)$$



Grathwohl et. al. (2019)

Continuous Normalizing Flows

Summary: Training a CNF for Simulation-based Inference

- 1. Generate a dataset of pairs (x, o) where we sample $x \sim p(x)$ and simulate $o \sim p(o \mid x)$
- 2. The training objective is $\mathbb{E}_{(x,o)\in p(x,o)}[-\log q_{\theta}(x\mid o)]$
- 3. To compute $\log q_{\theta}(x \mid o)$ solve the neural ODE (Euler, RK, etc.)

$$\underbrace{\begin{bmatrix} \mathbf{z}_{0} \\ \log p(\mathbf{x}) - \log p_{z_{0}}(\mathbf{z}_{0}) \end{bmatrix}}_{\text{solutions}} = \underbrace{\int_{t_{1}}^{t_{0}} \begin{bmatrix} f(\mathbf{z}(t), t; \theta) \\ -\operatorname{Tr}\left(\frac{\partial f}{\partial \mathbf{z}(t)}\right) \end{bmatrix} dt}_{\text{dynamics}}, \quad \underbrace{\begin{bmatrix} \mathbf{z}(t_{1}) \\ \log p(\mathbf{x}) - \log p(\mathbf{z}(t_{1})) \end{bmatrix}}_{\text{initial values}} = \underbrace{\begin{bmatrix} \mathbf{x} \\ 0 \end{bmatrix}}_{\text{initial values}}$$

2. Calculate the gradient $\nabla_{\theta} \log q_{\theta}(x \mid o)$ and update θ

Continuous Normalizing Flows

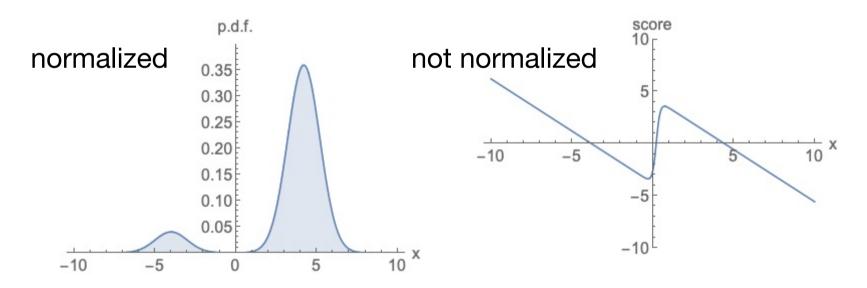
- ∇ For calculating $\nabla_{\theta} \log q_{\theta}(x \mid o)$, we can use any AD method we prefer (see previous lectures)
- ightharpoonup Maximum likelihood training that directly minimizes $\mathrm{KL}(p \mid \mid q_{\theta})$
- \checkmark Efficiently share parameters θ across different time steps t
- X In practice the memory requirements and training/inference costs are large→ solving the neural ODE for training is not scalable!

We need to find a way to train networks more efficiently without needing to backpropagate gradients through the entire ODE

Score Matching

Score Matching

- A normalizing flow directly approximates the target distribution p(x) by $q_{\theta}(x)$
- Instead, we can approximate the score $\nabla_x \log p(x)$ with a network $s_{\theta}(x)$



Score Matching

For training the network $s_{\theta}(x)$, we want to minimize the **Fisher divergence**

$$\mathbb{E}_{x \sim p(x)}[||\nabla_x \log p(x) - s_{\theta}(x)||^2]$$

Unfortunately, $\nabla_x \log p(x)$ is not accessible directly

There are two alternative ways to train $s_{\theta}(x)$

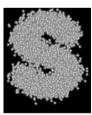
- Implicit score matching (Hyvärinen, 2005)
- Denoising score matching (Vincent, 2010)

Denoising Score Matching

Perturbed Dataset

- For the dataset $\{x_1, \ldots, x_n\}$ we consider the **perturbed** dataset $\{\tilde{x}_1, \ldots, \tilde{x}_n\}$
- We sample the perturbed data by adding Gaussian noise $\tilde{x} = x + \sigma z$ where $z \sim \mathcal{N}(0,I)$
- For now we keep the **noise level** $\sigma > 0$ fixed
- The smaller the noise level σ , the closer the densities p_σ and p

$$\lim_{\sigma \to 0} \mathrm{KL}(p_{\sigma} | | p) = 0$$



$$\{\tilde{x}_1,\ldots,\tilde{x}_n\}$$

Denoising Score Matching

The Score of the Perturbed Dataset

• We can write the perturbed distribution $p_{\sigma}(x)$ as

$$p_{\sigma}(\tilde{x}) = \int p_{\sigma}(\tilde{x} \mid x) p(x) dx = \mathbb{E}_{x \sim p(x)}[p_{\sigma}(\tilde{x} \mid x)]$$

• Since the **conditional density** $p_{\sigma}(\tilde{x} \mid x)$ is Gaussian, we can write

$$p_{\sigma}(\tilde{x} \mid x) = \frac{1}{\sqrt{(2\pi)^{D} \sigma^{D}}} \exp\left(-\frac{1}{2\sigma^{2}} (\tilde{x} - x)^{T} (\tilde{x} - x)\right)$$

The score of the conditional density is

$$\nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x} \mid x) = -\frac{\tilde{x} - x}{\sigma^2}$$

Denoising Score Matching

The Score of the Perturbed Dataset

We can train s_{θ} to approximate the score of the perturbed dataset using the identity

$$\arg\min_{\theta} \mathbb{E}_{\tilde{x} \sim p_{\sigma}(\tilde{x})} \left[\left| \left| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x}) \right| \right|^{2} \right]$$

$$= \arg\min_{\theta} \mathbb{E}_{x \sim p(x), \tilde{x} \sim p_{\sigma}(\tilde{x}|x)} \left[\left| \left| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x}|x) \right| \right|^{2} \right]$$

Vincent (2010)

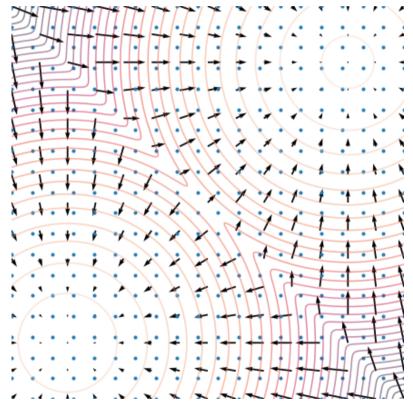
- All steps required in the second equation can be computed efficiently
- Assume we have trained s_{θ} for the perturbed dataset with noise level σ : How can we use $\nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x})$ to obtain a generative model for p(x)?

Langevin Dynamics: Consider a sample x_0 from an initialization distribution $\pi(x)$ and the iteration rule

$$x_{i+1} \leftarrow x_i + \epsilon \nabla_x \log p(x) + \sqrt{2\epsilon} z_i$$

for i = 0,1,...,K and $z_i \sim \mathcal{N}(0,I)$.

- The iterate x_K converges to a sample from p(x) as $K \to \infty$ and $\epsilon \to 0$ (under regularity conditions)
- We can plug in the trained network s_{θ} for the score $\nabla_x \log p(x)$



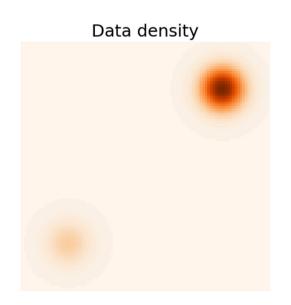
Source: yang-song.net/blog/2021/score

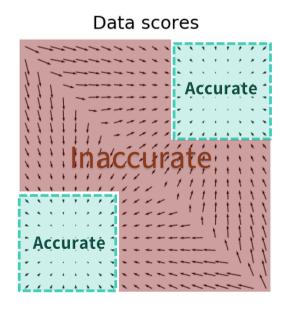
Score-based Generative Modeling

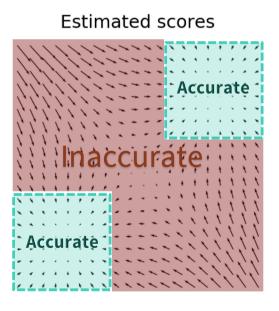
Source: yang-song.net/blog/2021/score



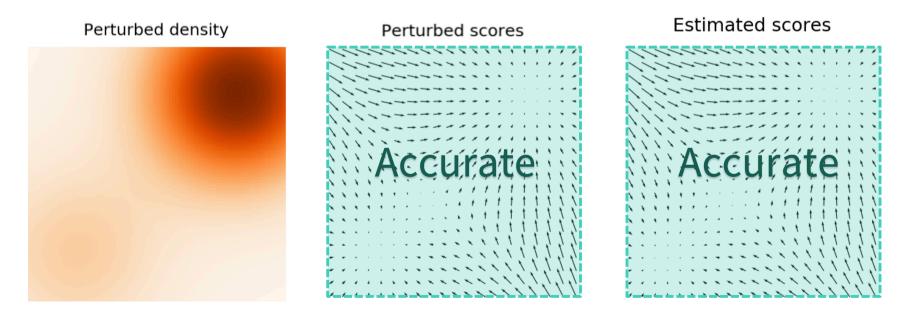
- For inference, samples are typically inside **low-density** regions
- The network s_{θ} is trained from data in high-density regions
- Extrapolation from low to high density is difficult → poor sample quality







- By increasing the noise level σ of the perturbed dataset, samples cover larger regions of the perturbed data space
- In this case, the perturbation is too large and $p(x) \not\approx p_{\theta}(x)$



Annealed Langevin Dynamics

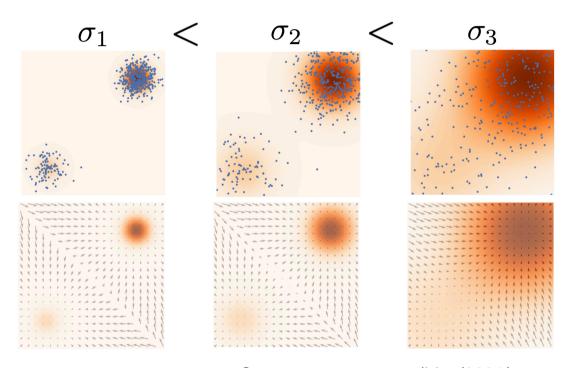
Annealed Langevin Dynamics

• Consider multiple noise scales

$$0 < \sigma_1 < \sigma_2 < \ldots < \sigma_L$$

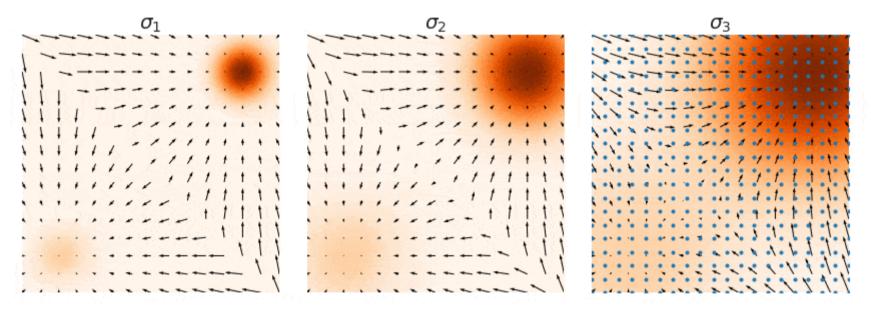
and train a network $s_{\theta}(x, \sigma_i)$ with the noise scale σ_i as additional input

• Repeatedly apply Langevin Dynamics for each noise scale, starting from the largest noise σ_L until the smallest noise σ_1



Source: <u>yang-song.net/blog/2021/score</u>

Annealed Langevin Dynamics



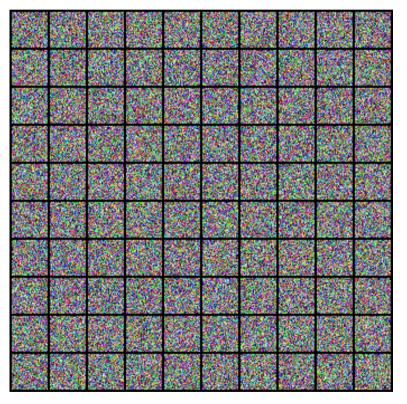
Source: <u>yang-song.net/blog/2021/score</u>

Annealed Langevin Dynamics

Summary

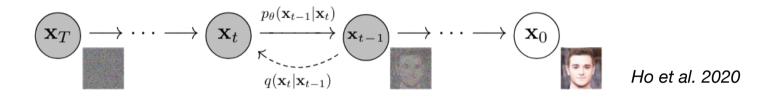
- Denoising score matching works well even for highdimensional data such as images.
- No need to backpropagate gradients through many steps → method is much more scalable than CNFs
- Specifying a good sequence of noise scales is critical
- Inference requires many evaluations of $s_{\theta}(x, \sigma_i)$
- We can sample from p(x) but not directly compute likelihoods
- No maximum likelihood training

CIFAR 10



Source: <u>yang-song.net/blog/2021/score</u>

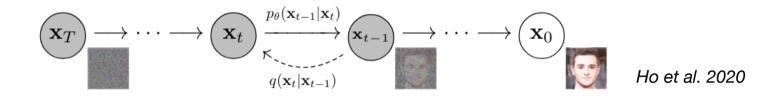
Diffusion Models



Diffusion models are latent variable models of the form

$$p_{\theta}(x_0) = \int p_{\theta}(x_{0:T}) dx_{1:T}$$

where x_1, \ldots, x_T are latents with the same dimensionality as $x_0 \sim q(x_0)$



Reverse process: (Markov chain with learned Gaussian transition)

$$p_{\theta}(x_{0:T}) := p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_t) \quad \text{and} \quad p_{\theta}(x_{t-1} | x_t) = \mathcal{N} \left(\mu_{\theta}(x_t, t), \beta_t I \right)$$

Forward process (Markov chain that adds Gaussian noise):

$$q(x_{1:T}|x_0) := \prod_{t=1}^{T} q(x_t|x_{t-1}) \text{ and } q(x_t|x_{t-1}) = \mathcal{N}\left(\sqrt{1-\beta_t}x_{t-1}, \beta_t I\right)$$

- We set the noise scales β_t as hyperparameters (usually T=1000, $\beta_0=10^{-4}$, $\beta_T=0.02$)
- Given data x_0 , we can sample the noisy latent x_t via

$$q(x_t | x_0) = \mathcal{N}(x_t, \sqrt{\overline{\alpha}_t} x_0, (1 - \overline{\alpha}_t)I))$$

where
$$\alpha_t = 1 - \beta_t$$
 and $\overline{\alpha}_t = \prod_{s=1}^t \alpha_s$

• Training objective (variational bound on the likelihood):

$$\mathbb{E}[-\log p_{\theta}(x_0)] \le \mathbb{E}\left[-\log p(x_T) - \sum_{t \ge 1} \log \frac{p_{\theta}(x_{t-1} | x_t)}{q(x_t | x_{t-1})}\right]$$

We can reformulate the training objective as

$$\mathbb{E}\left[\frac{\mathrm{KL}(q(x_{T}|x_{0})||p(x_{T}))}{L_{T}} + \sum_{t>1} \frac{\mathrm{KL}(q(x_{t-1}|x_{t},x_{0})||p_{\theta}(x_{t-1}|x_{t}))}{L_{t-1}} - \log p_{\theta}(x_{0}|x_{1})\right]$$

$$L_{T}$$

$$L_{T}$$

$$L_{1}$$

- L_T does not depend on heta
- L_1 is easy to train (continuous to discrete decoder)
- L_{t-1} is the KL-divergence between two Gaussian distributions

Analysing L_{t-1}

• The Gaussian for the forward process is

$$q(x_{t-1} | x_t, x_0) = \mathcal{N}(x_{t-1}; \tilde{\mu}_t(x_t, x_0), \tilde{\beta}_t I)$$

with

$$\tilde{\mu}_t(x_t, x_0) = \frac{\sqrt{\overline{\alpha}_{t-1}}\beta_t}{1 - \overline{\alpha}_t}x_0 + \frac{\sqrt{\alpha_t}(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_t}x_t \quad \text{and} \quad \tilde{\beta}_t = \frac{1 - \overline{\alpha}_{t-1}}{1 - \overline{\alpha}_t}\beta_t$$

• L_{t-1} simplifies to matching the means of the forward and reverse process

$$L_{t-1} = \mathbb{E}\left[\frac{1}{2\beta_t} ||\tilde{\mu}_t(x_t, x_0) - \mu_{\theta}(x_t, x)||^2\right] + C$$

ϵ -prediction

· We can write

$$x_t(x_0, \epsilon) = \sqrt{\overline{a}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon$$
 for $\epsilon \sim \mathcal{N}(0, I)$

• Instead of predicting the mean $\mu_{\theta}(x_t, t)$, predict the noise $\epsilon_{\theta}(x_t, t)$

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \overline{\alpha_t}}} \epsilon_{\theta}(x_t, t) \right)$$

• L_{t-1} changes to

$$L_{t-1} = \mathbb{E}_{x_0, \epsilon} \left[\frac{\beta_t^2}{2\beta_t \alpha_t (1 - \overline{\alpha}_t)} ||\epsilon - \epsilon_{\theta} (\sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t)||^2 \right] + C$$

Training and Inference

In practice the weightings of the individual terms are often dropped

$$L_{\mathrm{DM}}(\theta) := \mathbb{E}_{t,x_0,\epsilon} \left[||\epsilon - \epsilon_{\theta} \left(\sqrt{\overline{\alpha}_t} x_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon \right) t \right) ||^2 \right]$$

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0